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Abstract

This paper derives accurate equations of elastic deformation for laminated composite deep\ thick shells[
The equations include shells with a pre!twist and accurate force and moment resultants which are con!
siderably di}erent than those used for plates[ This is due to the fact that the stresses over the thickness of
the shell have to be integrated on a trapezoidal!like cross!section of a shell element to obtain the stress
resultants[ Numerical results are obtained and showed that accurate stress resultants are needed for laminated
composite deep thick shells\ especially if the curvature is not spherical[ A consistent set of equations of
motion\ energy functionals and boundary conditions are also derived[ These may be used in obtaining exact
solutions or approximate ones like the Ritz or _nite element methods[ Þ 0888 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

Love|s thin shell theory "Love\ 0781# is among the _rst developments of the theory of shells[ In
this theory\ Love introduced his _rst approximation for bending analysis of shells[ This approxi!
mation de_nes a linear analysis of thin shells\ in which various assumptions were introduced[
Among these assumptions\ strains and displacements are small such that second! and higher!order
terms can be neglected[ Also\ Love assumed the thickness of the shell to be small compared with
other shell parameters\ the transverse stress to be small compared with other stresses in shells and
normals to the undeformed surface to remain straight and normal to the deformed surface[ The
_rst of these assumptions de_nes a linear analysis of shells[ This assumption needs to be relaxed if
the strains and:or displacements become large[ Displacement is considered de_nitely large if it
exceeds the thickness of the shell[ This is typical for thin shells[ Nonlinear behavior can be observed
even before this for various boundary conditions[ A recent study "Qatu\ 0883# concluded that this
assumption generally applies to most of the analyses of thick shells[ This is because stresses
exceed allowable values before the de~ection becomes large enough for the nonlinear terms to be
important[
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This paper is concerned with thick\ deep shells\ where the remaining assumptions in Love|s _rst
approximation need to be re!examined[ The thickness is no longer small compared with other shell
parameters\ nor do the normals of the undeformed surface remain as such[ Various studies "Koiter\
0858^ Gol|denveizer\ 0857^ Noor\ 0889# concluded that even for thicker shells the transverse normal
stress remains small compared with other stresses in the shell[

Since the _rst Love shell theory and other theories were introduced\ inconsistencies appeared in
many of these theories[ Kadi "0862# and Leissa "0862# showed that the strainÐdisplacement
relations used by Naghdi and berry "0853# are inconsistent with regard to rigid body motion[
Other theories including Love "0781# and Timoshenko and Woinowsky!Krieger "0848#\ although
free from rigid body motion inconsistencies\ introduced unsymmetric di}erential operators\ which
contradicts the theorem of reciprocity and yields imaginary numbers for natural frequencies in a
free vibration analysis[ Other inconsistencies appeared when the assumption of small thickness
"h:R and z:R ð 0# are imposed and symmetric stress resultants "i[e[\ Nab � Nba and Mab � Mba\ [ [ [#
are obtained\ which is not true unless the shell is spherical[ To overcome some or all the above
inconsistencies\ various theories were introduced including that of Sanders "0848#[ Earlier theories
"Vlasov\ 0838# tried to resolve some of these inconsistencies by expanding the terms z:R that
appear in the denominator of the stress resultant equations using a Taylor series[

On the other hand\ it was noted as early as 0766 that rotary inertia terms are important in the
analysis of vibrating systems "Rayleigh\ 0766#[ More than forty years later\ Timoshenko "0810#
showed that shear deformation terms are at least as important[ Since then researchers realized that
for thick beams\ plates or shells\ both rotary inertia and shear deformation have to be included in
any reliable theory for such components[ This\ when generalized\ led to a necessary relaxation of
some of the assumptions in Love|s _rst approximation and shear deformation shell theories were
born[ Among the _rst of such theories were those of Vlasov "0838#\ Reissner "0841#\ Naghdi
and Cooper "0845# and others[ Interestingly enough\ many of the theories that included shear
deformation ignored the "0¦z:R# terms in the stress resultant equations[ On the other hand\
theories that included such terms truncated them later "Vlasov\ 0838#[

Among the most notable researchers in the area of laminated composite shells is Ambartsumian
whose work is summarized in a monograph of his own "Ambartsumian\ 0850#[ He introduced
various laminated composite shell theories by expanding the stress resultant equation of earlier
theories to those for anisotropic shells[ Since then various survey articles appeared "Ambartsumian\
0851^ Bert and Egle\ 0858^ Noor\ 0889^ Liew et al[\ 0886# which reviewed theories and analysis of
laminated composite shells[ In most of these theories\ shear deformation was included and it
was found that shear deformation e}ects for laminated composite materials are generally more
important than those for isotropic materials[ Unfortunately\ while shear deformation shell theories\
including higher!order ones "e[g[ Lim and Liew\ 0884^ Liew and Lim\ 0885#\ include shear defor!
mation and rotary inertia\ they fail to consider the 0¦z:R terms in the stress resultant equations[
This leads to numerous errors in the constitutive equations used for laminated deep thick shells[
This was initially observed by Bert "0856# and only recently by Chang "0882# and Leissa and
Chang "0885#[ Chang did consider this term\ but truncated it using a geometric series expansion[
He showed that this with only First!order Shear Deformation "FSD# theories gave more accurate
results than higher!order theories in which the term was neglected "Reddy\ 0873^ Reddy and Liu\
0874^ Librescu et al[\ 0878a\ b#[

The purpose of this work is to introduce a consistent and accurate set of equations for laminated
composite thick and deep shells[ The equations include accurate force and moment resultant
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Fig[ 0[ A shell element in curvilinear coordinates[

equations for laminated composite deep thick shells where the 0¦z:R terms are included in the
stress resultant equations and integrated exactly[ Also it will be shown that these terms can be as
important as shear deformation e}ects in many shell con_gurations[ The resulting force and
moment resultant equations can be used in many shell theories[ The equations of motion\ boundary
conditions are derived from the energy functionals using Hamilton|s principle[

1[ Kinematic relations

Consider a shell element of radii of curvature Ra and Rb and a radius of twist Rab and a thickness
h "Fig[ 0#[ The length of an in_nitesimal element of thickness dz located at distance z from the
shell midsurface is

ds"z#
a �

A da

Ra

"Ra¦z# � A"0¦z:Ra# da

ds"z#
b �

B db

Rb

"Rb¦z# � B"0¦z:Rb# db "0#
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where A and B are Lame� parameters "Leissa\ 0862#[ The displacement vector U of an arbitrary
point within the shell may be written as]

U � uia¦vib¦wiz "1#

where ia\ ib and iz are unit vectors in the a!\ b! and z!directions\ respectively[
The strain displacement relations can be derived from the above equations "Gol|denveizer\ 0842^

Chang\ 0882^ Leissa and Chang\ 0885# as
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Assuming that normals to the midsurface strains remain straight during deformation but not
normal\ the displacements can be written as

u"a\ b\ z# � u9"a\ b#¦zca"a\ B#

v"a\ b\ z# � v9"a\ b#¦zcb"a\ B#

w"a\ b\ z# � w9"a\ b# "3#

where u9\ v9 and w9 are midsurface displacements of the shell and ca and cb are midsurface
rotations[ The above equations describe a typical _rst order shear deformation shell theory and
will constitute the only assumption made in this analysis when compared with the three!dimensional
theory of elasticity[ Substituting eqns "3# into "2# yields]

oa �
0
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0
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0
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0
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where the midsurface strains are]

o9a �
0
A

1u9

1a
¦

v9

AB
1A
1b

¦
w9

Ra

o9b �
0
B

1v9

1b
¦

u9

AB
1B
1a

¦
w9

Rb

o9ab �
0
A

1v9

1a
−

u9

AB
1A
1b

¦
w9

Rab

o9ba �
0
B

1u9

1b
−

v9

AB
1B
1a

¦
w9

Rab

g9az �
0
A

1w9

1a
−

u9

Ra

−
v9

Rab

¦ca

g9bz �
0
B

1w9

1b
−

v9

Rb

−
u9

Rab

¦cb "5#

and the curvature and twist changes are]
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"6#

2[ Force and moment resultants

The stressÐstrain relationship for a typical nth lamina "typically called monoclinic# in a laminated
composite shell made of N laminae "Fig[ 4# is "Whitney\ 0876#]
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Fig[ 1[ Stresses in shell coordinates[

Fig[ 2[ Force resultants in shell coordinates[

The positive notations of the stresses are shown in Fig[ 1[ It should be mentioned that no stretching
is assumed in the z!direction in the above equations "i[e[\ oz � 9#[ This actually is directly derived
from the third equation in "3#[
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Fig[ 3[ Moment resultants in shell coordinates[

Fig[ 4[ Lamination parameters in shells[

The force and moment resultants "Figs 2 and 3# are obtained by integrating the stresses over the
shell thickness[ The normal and shear force resultants are]
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&
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'"0¦z:Ra# dz "8#

The bending and twisting moment resultants\ as well as higher!order shear resultant terms are]
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where Pa and Pb are higher!order shear terms\ needed only if the radius of twist curvature exist
"i[e[ Rab � �#[ It should be mentioned that although the stresses sab � sba\ the stress resultants
Nab � Nba and Mab � Mba\ unless Ra � Rb which is the case only for spherical shells or ~at plates[
Substituting eqns "4# and "7# into "8# and "09#\ yields the following equations for the normal\ in!
plane and shear forces]
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Nba � s
N
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The higher!order shear terms\ needed for pre!twisted shells are]
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The following equations are also obtained for the bending and twisting moments]
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As can be seen in the above equations\ the term "0¦z:Rn# where n is either a or b\ in the
denominator creates di.culties in carrying out the integration[ Such di.culties do not exist for
plates[ In most thin shell theories\ the term was ignored "Leissa\ 0862#[ In some thin shell theories
"e[g[\ Vlasov|s#\ the term was expanded in a geometric series form[ Numerical investigations
revealed that for thin shells\ such expansion did not introduce better results[ This can be under!
standable for thin shells where the term "0¦z:Rn# is between 9[87 ad 0[91 depending on the value
of z[

For thick shells\ shear deformation should be considered[ However\ many researchers fail to
include the above term in the stress resultant equations "Reddy\ 0873^ Reddy and Liu\ 0874#[
When the term was expanded and then truncated in a recent presentation "Chang\ 0882^ Leissa
and Chang\ 0885#\ better results were obtained when compared with three!dimensional recent
results "Bhimaraddi\ 0880#[ The Appendix shows the derivation in which the term is expanded in
a geometric series and then truncated[ In this paper\ exact stress resultants are obtained when the
term is included and the integration is carried out exactly[ This will yield the following stress
resultant equations]
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where Ki and Kj in the above equations are shear correction coe.cients "Chang\ 0882#\ typically
taken at 4:5 and where
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3[ Numerical veri_cation

Tables 0 and 1 show a comparison between the accurate stress resultants obtained here with
those valid for plates and commonly used for shells[ Note that a and b are the side lengths of the
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Table 0
Non!dimensional sti}ness parameters for homogeneous deep isotropic shells "E � E0 � E1\ n � 9[2\ a:b � 0\ a:Rb � 1\ a:Rab � 9\ a:h � 09#

Plate approx[ Accurate equations Plate approx[ Accurate equations Plate approx[ Accurate equations

"i\ j#
Aij

E1a
1

AÞij

E1a
1

A
ij

E1a
1

Error�
099Bij

E1a
2

099BÞij

E1a
2

099B
ij

E1a
2

Error�
0999Dij

E1a
3

0999DÞij

E1a
3

0999D
ij

E1a
3

Error�

Cylindrical shells "Ra:Rb � 9#
"0\ 0# 9[098789 9[098789 NA 9[9 9 9[907295 NA 099 9[980464 9[980461 NA 9[9
"1\ 1# 9[098789 NA 9[009146 9[2 9 NA −9[907305 099 9[980646 NA 9[984017 9[5
"5\ 5# 9[927359 9[927359 9[927477 9[2 9 9[995396 −9[995335 099 9[921949 9[921938 9[921133 9[5

Hyperbolic paraboloidal shells "Ra:Rb � −0#
"0\ 0# 9[098789 9[009516 NA 9[5 9 9[925740 NA 099 9[980464 9[981574 NA 0[1
"1\ 1# 9[098789 NA 9[009516 9[9 9 NA −9[925740 099 9[980464 NA 9[981571 0[1
"5\ 5# 9[927359 9[927607 9[927607 9[9 9 9[901876 −9[901786 099 9[921949 9[921326 9[921326 0[1

� E[g[ error � ="AÞij−Aij#×099:AÞij=[
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Table 1
Non!dimensional sti}ness parameters for ð9\ 89Ł laminated thick deep shells "E0:E1 � 04\ G01:E1 � 9[4\ G02:E1 � 9[4\ n01 � 9[2\ a:b � 0\ a:Rb � 1\ a:Rab � 9\ a:h � 09#

Plate approx[ Accurate equations Plate approx[ Accurate equations Plate approx[ Accurate equations

"i\ j#
Aij

E1a
1

AÞij

E1a
1

A
ij

E1a
1

Error�
099Bij

E1a
2

099BÞij

E1a
2

099B
ij

E1a
2

Error�
0999Dij

E1a
3

0999DÞij

E1a
3

0999D
ij

E1a
3

Error�

Cylindrical shells "Ra:Rb � 9#
"0\ 0# 9[793718 9[658523 NA 3[4 −0[659452 −0[515377 NA 7[1 9[569580 9[513067 NA 6[9
"1\ 1# 9[793718 NA 9[661045 3[1 0[659452 NA 0[523439 6[6 9[569580 NA 9[529343 6[9
"5\ 5# 9[949999 9[938888 9[949056 9[2 9 9[997218 −9[997268 099 9[930556 9[931781 9[930807 9[5

Hyperbolic paraboloidal shells "Ra:Rb � −0#
"0\ 0# 9[793718 9[628349 NA 7[7 −0[659452 −0[497289 NA 05[6 9[569580 9[489067 NA 02[5
"1\ 1# 9[793718 NA 9[628349 7[7 0[659452 NA −0[497289 05[6 9[569580 NA 9[489067 02[5
"5\ 5# 9[949999 9[949224 9[949224 9[5 9 9[905656 −9[905656 099 9[930556 9[931069 9[931069 0[1

� E[g[ error � ="AÞij−Aij#×099:AÞij=[
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shell "Fig[ 0#\ and h is the total thickness of the shell "Fig[ 1#[ In Table 0\ isotropic thick "a:h � 09#
shells of deep curvature "a:Rb � 1# are used[ The Aij terms are the membrane stress resultants and
the Bij terms present the stretchingÐbending coupling[ The Dij terms are the bending stress result!
ants[ All the stress resultant terms have been non!dimensionalized as shown in the tables[ Spherical
shells are not considered here because stress resultants for spherical shells are the same as those
for plates[ This has been veri_ed numerically[ One important observation is that the use of plate
stress resultants did not predict an extensionÐbending coupling for isotropic material\ common
for laminated composites\ while the accurate stress resultants did predict such coupling[ Such
observation was earlier made for curved beams "Qatu\ 0882#[ Other than the above phenomenon\
the accurate equations do not seem to improve the accuracy of the stress resultants by more than
1)[ Further numerical results for a thickness ratio of _ve yielded an improvement of no more
than 4)[ Hence\ the accurate equations may not be needed for isotropic shells and the term
"0¦z:R# in the denominator can be neglected yielding stress resultants similar to those of plates[
The expansion of such a term by use of a geometric series is not needed and yields undesired
complexities as in Vlasov|s equations "Leissa\ 0862#[

Laminated composite thick and deep shells are considered in Table 1[ As shown there\ the use
of the plate stress resultant equations did yield up to 05) error in the stress resultant coe.cients[
Some researchers used the plate stress resultant equations for shells with a thickness ratio of _ve[
This 05) error is more than what is typically reported as an error due to ignoring shear defor!
mation[ Such use will lead to greater errors[ It is noticed that such an error is more for hyperbolic
paraboloidal shells than that for cylindrical shells[

Table 2 shows the sti}ness parameters for laminated composite thick shallow shells[ The cur!
vature is taken at the limit of shallow shell theory "a:R � 9[4#[ As can be seen from the table\ the
plate approximate equations lead to a maximum of 3) error for hyperbolic paraboloidal shells[
Thus\ the accurate equations may not be necessary for laminated shallow shells[

Table 3 shows results obtained using parameters usually considered as the limits of thin shell
theories[ As noted\ using the plate equations yield a maximum error of approximately 3)[ Thus\
the accurate equations need not be used for thin laminated and isotropic shells[

In conclusion\ ignoring the "0¦z:R# term in the denominator yields considerable inaccuracy for
laminated composite deep thick shells[ The accurate stress resultant equations derived here should
then be used for these shells[

4[ Energy functionals

The strain energy of the body when under elastic deformation can be written as]

U �
0
1 gV

"saoa¦sbob¦szoz¦sabgab¦sazgaz¦sbzgbz# dV "06#

where V is volume and

dV � dSa dSb dz � AB"0¦z:Ra#"0¦z:Rb# da db dz "07#

Substitute "4#\ "8# and "09# into the above equations\ the strain energy functional can then be
written as]



M
[S

[Q
atu:InternationalJournalof

S
olids

and
S
tructures

25
"0888#

1806Ð1830
1820

Table 2
Non!dimensional sti}ness parameters for ð9\ 89Ł laminated thick shallow shells "E0:E1 � 04\ G01:E1 � 9[4\ G02:E1 � 9[4\ n01 � 9[2\ a:b � 0\ a:Rb � 9[4\ a:Rab � 9\ a:h � 09#

Plate approx[ Accurate equations Plate approx[ Accurate equations Plate approx[ Accurate equations

"i\ j#
Aij

E1a
1

AÞij

E1a
1

A
ij

E1a
1

Error�
099Bij

E1a
2

099BÞij

E1a
2

099B
ij

E1a
2

Error�
0999Dij

E1a
3

0999DÞij

E1a
3

0999D
ij

E1a
3 Error�

Cylindrical shells "Ra:Rb � 9#
"0\ 0# 9[793718 9[658932 NA 0[0 −0[659452 −0[616983 NA 0[8 9[569580 9[548979 NA 0[7
"1\ 1# 9[793718 NA 9[685197 0[0 0[659452 NA 0[616522 0[8 9[569580 NA 9[548845 0[5
"5\ 5# 9[949999 9[949999 9[949999 9[9 9 9[991968 −9[991979 099 9[930556 9[930862 9[930571 9[5

Hyberpolic paraboloidal shells "Ra:Rb � −0#
"0\ 0# 9[793718 9[676442 NA 1[1 −0[659452 −0[583469 NA 2[8 9[569589 9[538067 NA 2[2
"1\ 1# 9[793718 NA 9[676442 1[1 0[659452 NA 0[583469 2[8 9[569589 NA 9[538067 2[2
"5\ 5# 9[949999 9[949910 9[949910 9[9 9 9[993057 −9[993057 099 9[930555 9[930587 9[930587 9[0

� E[g[ error � ="AÞij−Aij#×099:AÞij=[
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Table 3
Non!dimensional sti}ness parameters for ð9\ 89Ł laminated thin deep shells "E0:E1 � 04\ G01:E1 � 9[4\ G02:E1 � 9[4\ n01 � 9[2\ a:b � 0\ a:Rb � 1\ a:Rab � 9\ a:h � 39#

Plate approx[ Accurate equations Plate approx[ Accurate equations Plate approx[ Accurate equations

"i\ j#
Aij

E1a
1

AÞij

E1a
1

A
ij

E1a
1

Error�
099Bij

E1a
2

099BÞij

E1a
2

099B
ij

E1a
2

Error�
0999Dij

E1a
3

0999DÞij

E1a
3

0999D
ij

E1a
3 Error�

Cylindrical shells "Ra:Rb � 9#
"0\ 0# 9[190196 9[088997 NA 0[0 −9[009924 −9[096839 NA 0[8 9[909379 9[909297 NA 0[8
"1\ 1# 9[190196 NA 9[088938 0[0 0[009924 NA 9[096828 0[8 9[909379 NA 9[909201 0[5
"5\ 5# 9[901499 9[901499 9[901492 9[9 9 9[999029 −9[999029 099 9[999540 9[999540 9[999540 9[9

Hyberpolic paraboloidal shells "Ra:Rb � −0#
"0\ 0# 9[190196 9[085777 NA 1[1 −9[009924 −9[094800 NA 2[8 9[909379 9[909032 NA 2[2
"1\ 1# 9[190196 NA 9[085777 1[1 9[009924 NA 9[094800 2[8 9[909379 NA 9[909032 2[2
"5\ 5# 9[901499 9[901494 9[901494 9[9 9 9[999150 −9[999150 099 9[999540 9[999541 9[999541 9[0

� E[g[ error � ="AÞij−Aij#×099:AÞij=[
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U �
0
1 ga gb 0Nao9a¦Nbo9b¦Nabo9ab¦Nbao9ba¦Qag9az¦Qbg9bz

¦Maka¦Mbkb¦Mabkab¦Mbakba−
Pacb

Rab

−
Pbca

Rab 1AB da db "08#

which can be written in terms of displacements by substituting eqns "5# and "6# in the above
equation[

External work can be done on a shell element by applying distributed forces and moments as
well as end reaction[ The total work can be written as]

W � ga gb

"qau9¦qbv9¦qnw9¦maca¦mbcb#AB da db

¦gb

"N9au9¦N9abv9¦Q9aw9¦M9aca¦M9bacb#B db

¦ga

"N9bv9¦N9bau9¦Q9bw9¦M9bcb¦M9abca#A da "19#

where N9a\ N9b\ N9ab and N9ba are in!plane normal and shear force results^ Q9a and Q9b are out of
plane shear force resultants^ M9a and M9b are bending moments and M9ab and M9ba are twisting
moments[ Work done by external concentrated forces can be added to the energy term by mul!
tiplying the force by the displacement component in its direction\ or by expanding the force in a
series[

Kinetic energy can be given by]

T �
r

1 gV 00
1u
1t1

1

¦0
1v
1t1

1

¦0
1w
1t 1

1

1 dV "10#

where r is mass density per unit volume and V is volume[
Substituting eqns "3# into the kinetic energy expression and integrating with respect to z\ yields]

T �
0
1 gA 00

1u9

1t 1
1

¦0
1v9

1t 1
1

¦0
1w9

1t 1
1

1IÞ0¦00
1u9

1t 10
1ca

1t 1¦0
1v9

1t 10
1cb

1t 11IÞ1

¦00
1ca

1t 1
1

¦0
1cb

1t 1
1

1 IÞ2 da db "11#

where]

IÞ0 � 0I0¦I1 0
0
Ra

¦
0
Rb1¦

I2

RaRb1
IÞ1 � 0I1¦I2 0

0
Ra

¦
0
Rb1¦

I3

RaRb1
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IÞ2 � 0I2¦I3 0
0
Ra

¦
0
Rb1¦

I4

RaRb1 "12#

ðI0\ I1\ I2\ I3\ I4Ł � s
N

k�0 g
hk

hk−0

r"k# ð0\ z\ z1\ z2\ z3Ł dz "13#

It should be mentioned that the terms I1 and I3 are non!zero only if the material densities are not
symmetric about the middle surface[ These quantities are zeros for unsymmetrical lamination if
the same material is used[

5[ Equations of motion

In order to develop a consistent set of equations\ the equations of motion will be derived using
Hamilton|s principle]

d g
t0

t9

"U−W−T# dt � 9 "14#

Substituting the equations for potential energy\ external work and kinetic energy and performing
the integration by parts and then setting the coe.cients of the displacement variations equal to
zero\ in a normal manner\ yields the following equations of motion]

1

1a
"BNa#¦

1

1b
"ANba#¦

1A
1b

Nab−
1B
1a

Nb¦
AB
Ra

Qa¦
AB
Rab

Qb−ABqa � AB"IÞ0u�
1
9¦IÞ1c�

1
a #

1

1b
"ANb#¦

1

1a
"ANab#¦

1B
1a

Nba−
1A
1b

Na¦
AB
Rb

Qb¦
AB
Rab

Qa¦ABqb � AB"IÞ0v�
1
9¦IÞ1c�

1
b#

−AB 0
Na

Ra

¦
Nb

Rb

¦
Nab¦Nba

Rab 1¦
1

1a
"BQa#¦

1

1b
"AQb#¦ABqn � AB"IÞ0w�

1
9#

1

1a
"BMa#¦

1

1b
"AMba#¦

1A
1b

Mab−
1B
1a

Mb−ABQa¦
AB
Rab

Pb¦ABma � AB"IÞ1u�
1
9¦IÞ2c�

1
a #

1

1b
"AMb#¦

1

1a
"BMab#¦

1B
1a

Mba−
1A
1b

Ma−ABQb¦
AB
Rab

Pa¦ABmb � AB"IÞ1v�
1
9¦IÞ2c�

1
b# "15#

where the two dots over the terms present the second derivative of these terms with respect to time[

6[ Boundary conditions

Hamilton|s principle will also yield boundary terms that are consistent with the other equations[
These boundary terms for the boundaries with a � constant are]

N9a−Na � 9 or u9 � 9



M[S[ Qatu:International Journal of Solids and Structures 25 "0888# 1806Ð1830 1824

N9ab−Nab � 9 or v9 � 9

Q9a−Qa � 9 or w9 � 9

M9a−Ma � 9 or ca � 9

M9ab−Mab � 9 or cb � 9 "16#

Similarly for b � constant[ Chang "0882# obtained the same equations[

7[ Doubly curved shells

Consider a shell with the following characteristics]

"0# Constant radii of curvature Ra and Rb and a radius of twist of in_nity\ i[e[ "0:Rab# � 9[
"1# Constant Lame� parameters[ They equal one unit[

This is shown to be the case for shallow shells\ twisted plates\ cylindrical shells and barrel shells[
Constant Lame� parameters cannot be applied to general shells[

Substituting eqns "5#\ "6#\ "02# and "03# into eqns "15# yields the equilibrium equations in terms
of displacements[ These equations are proven useful when exact solutions are desired[ The equations
can be written as]

Lijui¦Miju�i � qi "17#

where

ui � ðu9\ v9\ w9\ ca\ cbŁT

and

qi � ð−qa\ −qb\ −qn\ −ma\ −maŁT

L00 � AÞ00

11

1a1
¦1A05

11

1a 1b
¦A
55

11

1b1
−

AÞ44

R1
a

L01 � AÞ05

11

1a1
¦"A01¦A55#

11

1a 1b
¦A
15

11

1b1
−

A34

RaRb

L02 � $
AÞ00¦AÞ44

Ra

¦
A01

Rb %
1

1a
¦$

A05¦A34

Ra

¦
A
15

Rb %
1

1b

L03 � BÞ00

11

1a1
¦1B05

11

1a 1b
¦B
55

11

1b1
¦

AÞ44

Ra

L04 � BÞ05

11

1a1
¦"B01¦B55#

11

1a 1b
¦B
15

11

1b1
−

A
34

Ra

The sti}ness parameters Lij in eqn "17# are]
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L11 � AÞ55

11

1a1
¦1A15

11

1a 1b
¦A
11

11

1b1
−

A
33

R1
b

L12 � $
A15¦A34

Rb

¦
AÞ05

Ra %
1

1a
¦$

A
11¦A
33

Rb

¦
A01

Ra %
1

1b

L13 � BÞ05

11

1a1
¦"B01¦B55#

11

1a 1b
¦B
15

11

1b1
¦

A34

Rb

L14 � BÞ55

11

1a1
¦1B15

11

1a 1b
¦B
11

11

1b1
¦

A
33

Rb

L22 � −AÞ44

11

1a1
−1A34

11

1a 1b
−A
33

11

1b1
¦

AÞ00

R1
a

¦
1A01

RaRb

¦
A
11

R1
b

L23 � $−AÞ44¦
BÞ00

Ra

¦
B01

Rb %
1

1a
¦$−A34¦

B05

Ra

¦
B
15

Rb %
1

1b

L24 � $−A34¦
BÞ05

Ra

¦
B15

Rb %
1

1a
¦$−A
33¦

B01

Ra

¦
B
11

Rb %
1

1b

L33 � −AÞ44¦DÞ00

11

1a1
¦1DÞ05

11

1a 1b
¦D
55

11

1b1

L34 � −A34¦DÞ05

11

1a1
¦"D01¦D55#

11

1a 1b
¦D
15

11

1b1

L44 � −A
33¦DÞ55

11

1a1
¦1D15

11

1a 1b
¦D
11

11

1b1
"18#

The mass parameters in eqn "17# are]

M00 � M11 � M22 � −IÞ0

M03 � M14 � −IÞ1

M33 � M44 � −IÞ2

all other Mij � 9 "29#

8[ Exact solutions for simple support boundaries

Equations "17# are valid for forced vibration problems[ They can be specialized to static analysis
by letting the time derivative equal zero[ To obtain the free vibration problem\ the static loading
"qi# is set to zero[

Assume that the shell is constructed of cross!ply laminates[ Thus\



M[S[ Qatu:International Journal of Solids and Structures 25 "0888# 1806Ð1830 1826

A05 � A15 � B05 � B15 � D05 � D15 � 9 "20#

For shear diaphragm boundaries "S1# "Leissa\ 0862#\ the well!known Navier solution can be
applied to obtain an exact solution[ The displacement and shear functions are assumed to be]

u9"a\ b\ t# � s
�

m�0

s
�

n�0

Umn cos"ama# sin"bnb# sin"vt#

v9"a\ b\ t# � s
�

m�0

s
�

n�0

Vmn sin"ama# cos"bnb# sin"vt#

w9"a\ b\ t# � s
�

m�0

s
�

n�0

Wmn sin"ama# sin"bnb# sin"vt#

ca"a\ b\ t# � s
�

m�0

s
�

n�0

camn cos"ama# sin"bnb# sin"vt#

cb"a\ b\ t# � s
�

m�0

s
�

n�0

cbmn sin"ama# cos"bnb# sin"vt# "21#

where am � mp:a and bn � np:b[
Substituting eqns "21# into eqns "17# and using the Fourier expansion for the loading functions

yields

ðKŁ"D#¦v1 ðMŁ"D# � −"F# "22#

where ðKŁ\ ðMŁ are the sti}ness and mass matrices\ respectively\ v is the frequency\ "F# is the
forcing function and

"D# � "Umn\ Vmn\ Wmn\ camn\ cbmn#T "23#

The above equations can be used directly for the natural frequencies[

09[ Comparison with published results

The following natural frequency parameter is used for the subsequent analysis]

V � va1zr:E1h
1 "24#

Tables 4 and 5 show comparisons of the natural frequency parameters with previously published
results for cylindrical and spherical open shells\ respectively[ FSD theories were used by Librescu
et al[ "0878# and Bhimaraddi "0880#[ Librescu et al[ and Bhimaraddi also used Higher!order Shear
Deformation "HSD# theories[ Bhimaraddi used the three!dimensional "2!D# theory of elasticity to
obtain exact analytical solutions[ The previously described Navier solution was used to obtain
these 2!D results[

In HSD theories\ boundary conditions at the upper and lower surface of the shell can be satis_ed
and there is no need for shear correction factors[ Despite this\ the results shown indicate that HSD
theories do not always yield better results than FSD ones[ The results show that all FSD and HSD
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Table 4
Non!dimensional frequency parameters V for ð9\ 89Ł cylindrical shells "E0:E � 14\G01:E1 � 9[4\G02:
E1 � 9[4\G12:E1 � 9[1\ n01 � 9[2\ k1 � 4:5\ a:b � 0\ a:h � 09#

Present Equation of Bhimaraddi Librescu
R:a theory Appendix A� "0880# "0878#

2!D FSD HSD FSD HSD
0 09[532 09[556 09[3974 09[6364 09[8078
1 8[3317 8[3466 8[2516 8[2542 8[4553
2 8[0644 8[0759 8[0331 8[9452 8[1531
3 8[9620 8[9700 8[9502 7[8392 8[0495
4 8[9110 8[9175 8[9199 7[7739 8[9842 7[820 7[848

09 7[8335 7[8368 7[8453 7[7915 8[9049 7[786 7[822
19 7[8083 7[8088 7[8230 7[6668 7[8893 7[783 7[823
� 7[8990 7[8990 7[8068 7[6539 7[8650 7[899 7[833

� Same as Chang "0882#[

Table 5
Non!dimensional frequency parameters V for ð9\ 89Ł spherical shells "E0:E � 14\G01:E1 � 9[4\G02:E1 � 9[4\G12:
E1 � 9[1\ n01 � 9[2\ k1 � 4:5\ a:b � 0\ a:h � 09#

Present Equation of Bhimaraddi Librescu
R:a theory Appendix A� "0880# "0878#

2!D FSD HSD FSD HSD
0 03[3635 03[3635 02[8863 03[7997 03[8964
1 09[6367 09[6367 09[4417 09[7943 09[8697
2 8[6711 8[6711 8[5806 8[6344 8[8229
3 8[3091 8[3091 8[2526 8[2221 8[4295
4 8[1298 8[1298 8[1954 8[0227 8[2250 8[136 8[181

09 7[8732 7[8732 7[8801 7[7473 8[9568 7[878 8[922
19 7[8102 7[8102 7[8252 7[6766 7[8881 7[811 7[855
� 7[8990 7[8990 7[8068 7[6539 7[8650 7[899 7[833

� Same as present theory\ agrees with Chang "0882# to the fourth or _fth decimal[

theories deviate from the 2!D theory of elasticity as the shell becomes deeper[ This indicates that
the error in these theories may very well be due to the fact that the term 0¦z:R was ignored[
Previous FSD and HSD theories further show that the deviation from 2!D is higher for spherical
shells than cylindrical ones[

The present theory shows closer approximation to the 2!D results when compared with the FSD
theories of Librescu et al[ and Bhimaraddi[ The present theory also shows better approximation
than HSD theories[

It should be mentioned that the equations used here "02#Ð"05# do su}er from numerical instability
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when one or both radii of curvature become large[ The expansion used in the Appendix yielded
results that are close to those obtained here and o}ers numerical stability when the radii values
become large\ like in shallow shells[ Such equations should be used for shallower shells[

00[ Conclusions

A complete and consistent set of equations are derived for laminated composite deep thick
shells[ These equations include an initial pre!twist\ which most other theories ignored[ These
equations further include accurate force and moment resultant equations by including the "0¦z:R#
terms "in the denominator of the stress resultant integrands# in the integration\ which almost all
other theories ignored[ Numerical results veri_ed that\ for the force and moment resultants as well
as the natural frequencies\ these terms should be included for deep thick composite shells[ Including
these terms in free vibration analysis yielded frequencies that are close to those obtained by 2!D
theory of elasticity[ Considerations of these terms yielded signi_cant enhanced accuracy for lami!
nated composite thick curved beams "Qatu\ 0882#[

It has been concluded that using the plate approximation equations for sti}ness parameters of
isotropic thick shells leads to an error of 1) and for thin laminated shells or thick shallow shells
leads to an error of 3)[ Thus\ the plate approximation equations may be used for these theories
without a major sacri_ce in the accuracy[ For deep thick shells\ however\ the accurate equations
presented here ðeqns "02#Ð"05#Ł or their geometric expansion alternative "equations provided in
the Appendix# should be used[ It has been demonstrated that the accurate equations yield closer
approximation than previously published FSD and HSD theories for the natural frequencies when
compared with the three!dimensional theory of elasticity[ This has been demonstrated by obtaining
results of various theories for spherical and cylindrical shells[ Hyperbolic paraboloidal shells should
yield similar results and will be investigated in a later study[

Appendix] Alternative derivation of the stress resultant equations

The term "0¦z:Ra#:"0¦z:Rb# shown in various locations in eqns "00# and "01# for force and
moment resultants is expanded here using a geometric series\ thus\

s
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k�0 g
hk

hk−0
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z
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00¦

z
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dz � s
N

k�0 g
hk

hk−0
00¦

z
Rak1 00−

z
Rbk

¦
z1

R1
bk

−= = =1 dz "A0#

where Ra and Rb are the radii of curvature of the midsurface of the shell\ Rak and Rbk are the radii
of curvature of the kth layer\ taken at the midsurface of that layer[

Multiplying the integrand of the right!hand side of eqn "A0# and neglecting higher!order terms\
yields
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s
N

k�0 g
hk

hk−0

00¦
z

Rak1
00¦

z
Rbk1

dz ¼ s
N

k�0 g
hk

hk−0
00¦z 0

0
Ra

−
0
Rb11 dz "A1#

Using the above equations and letting

c9 � 0
0
Ra

−
0
Rb1 "A2#

will yield the following equations

AÞij � Aij−c9Bij\ A
ij � Aij¦c9Bij

BÞij � Bij−c9Dij\ B
ij � Bij¦c9Dij

DÞij � Dij−c9Eij\ D
ij � Dij¦c9Eij
9 i\ j � 0\ 1\ 3\ 4\ 5 "A3#

where
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and
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The above equations are similar to those obtained by Chang "0882# and Leissa and Chang "0885#[
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