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Abstract

This paper derives accurate equations of elastic deformation for laminated composite deep, thick shells.
The equations include shells with a pre-twist and accurate force and moment resultants which are con-
siderably different than those used for plates. This is due to the fact that the stresses over the thickness of
the shell have to be integrated on a trapezoidal-like cross-section of a shell element to obtain the stress
resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated
composite deep thick shells, especially if the curvature is not spherical. A consistent set of equations of
motion, energy functionals and boundary conditions are also derived. These may be used in obtaining exact
solutions or approximate ones like the Ritz or finite element methods. © 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

Love’s thin shell theory (Love, 1892) is among the first developments of the theory of shells. In
this theory, Love introduced his first approximation for bending analysis of shells. This approxi-
mation defines a linear analysis of thin shells, in which various assumptions were introduced.
Among these assumptions, strains and displacements are small such that second- and higher-order
terms can be neglected. Also, Love assumed the thickness of the shell to be small compared with
other shell parameters, the transverse stress to be small compared with other stresses in shells and
normals to the undeformed surface to remain straight and normal to the deformed surface. The
first of these assumptions defines a linear analysis of shells. This assumption needs to be relaxed if
the strains and/or displacements become large. Displacement is considered definitely large if it
exceeds the thickness of the shell. This is typical for thin shells. Nonlinear behavior can be observed
even before this for various boundary conditions. A recent study (Qatu, 1994) concluded that this
assumption generally applies to most of the analyses of thick shells. This is because stresses
exceed allowable values before the deflection becomes large enough for the nonlinear terms to be
important.

* DANA Corporation, 1900 Opdyke Court, Auburns Hill, Michigan 48321, U.S.A. Fax: 001 248 377 1930

0020-7683/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved
PI: S0020-7683(98)00134-6



2918 M.S. Qatu/International Journal of Solids and Structures 36 (1999) 2917-2941

This paper is concerned with thick, deep shells, where the remaining assumptions in Love’s first
approximation need to be re-examined. The thickness is no longer small compared with other shell
parameters, nor do the normals of the undeformed surface remain as such. Various studies (Koiter,
1969; Gol’denveizer, 1968; Noor, 1990) concluded that even for thicker shells the transverse normal
stress remains small compared with other stresses in the shell.

Since the first Love shell theory and other theories were introduced, inconsistencies appeared in
many of these theories. Kadi (1973) and Leissa (1973) showed that the strain—displacement
relations used by Naghdi and berry (1964) are inconsistent with regard to rigid body motion.
Other theories including Love (1892) and Timoshenko and Woinowsky-Krieger (1959), although
free from rigid body motion inconsistencies, introduced unsymmetric differential operators, which
contradicts the theorem of reciprocity and yields imaginary numbers for natural frequencies in a
free vibration analysis. Other inconsistencies appeared when the assumption of small thickness
(h/R and z/R « 1) are imposed and symmetric stress resultants (i.e., N,y = Ny, and Mz, = My, .. .)
are obtained, which is not true unless the shell is spherical. To overcome some or all the above
inconsistencies, various theories were introduced including that of Sanders (1959). Earlier theories
(Vlasov, 1949) tried to resolve some of these inconsistencies by expanding the terms z/R that
appear in the denominator of the stress resultant equations using a Taylor series.

On the other hand, it was noted as early as 1877 that rotary inertia terms are important in the
analysis of vibrating systems (Rayleigh, 1877). More than forty years later, Timoshenko (1921)
showed that shear deformation terms are at least as important. Since then researchers realized that
for thick beams, plates or shells, both rotary inertia and shear deformation have to be included in
any reliable theory for such components. This, when generalized, led to a necessary relaxation of
some of the assumptions in Love’s first approximation and shear deformation shell theories were
born. Among the first of such theories were those of Vlasov (1949), Reissner (1952), Naghdi
and Cooper (1956) and others. Interestingly enough, many of the theories that included shear
deformation ignored the (142z/R) terms in the stress resultant equations. On the other hand,
theories that included such terms truncated them later (Vlasov, 1949).

Among the most notable researchers in the area of laminated composite shells is Ambartsumian
whose work is summarized in a monograph of his own (Ambartsumian, 1961). He introduced
various laminated composite shell theories by expanding the stress resultant equation of earlier
theories to those for anisotropic shells. Since then various survey articles appeared (Ambartsumian,
1962; Bert and Egle, 1969; Noor, 1990; Liew et al., 1997) which reviewed theories and analysis of
laminated composite shells. In most of these theories, shear deformation was included and it
was found that shear deformation effects for laminated composite materials are generally more
important than those for isotropic materials. Unfortunately, while shear deformation shell theories,
including higher-order ones (e.g. Lim and Liew, 1995; Liew and Lim, 1996), include shear defor-
mation and rotary inertia, they fail to consider the 1+z/R terms in the stress resultant equations.
This leads to numerous errors in the constitutive equations used for laminated deep thick shells.
This was initially observed by Bert (1967) and only recently by Chang (1993) and Leissa and
Chang (1996). Chang did consider this term, but truncated it using a geometric series expansion.
He showed that this with only First-order Shear Deformation (FSD) theories gave more accurate
results than higher-order theories in which the term was neglected (Reddy, 1984; Reddy and Liu,
1985; Librescu et al., 1989a, b).

The purpose of this work is to introduce a consistent and accurate set of equations for laminated
composite thick and deep shells. The equations include accurate force and moment resultant
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Fig. 1. A shell element in curvilinear coordinates.

equations for laminated composite deep thick shells where the 14 z/R terms are included in the
stress resultant equations and integrated exactly. Also it will be shown that these terms can be as
important as shear deformation effects in many shell configurations. The resulting force and
moment resultant equations can be used in many shell theories. The equations of motion, boundary
conditions are derived from the energy functionals using Hamilton’s principle.

2. Kinematic relations

Consider a shell element of radii of curvature R, and R and a radius of twist R,; and a thickness
h (Fig. 1). The length of an infinitesimal element of thickness dz located at distance z from the
shell midsurface is

Ad
s = 7“(13“ +2) = A(1+z/R,) do

o

dsf) = Bdp (R,+72) = B(+z/R;) dp (1)
B

R
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where 4 and B are Lamé parameters (Leissa, 1973). The displacement vector U of an arbitrary
point within the shell may be written as:

U = ui, +viy +wi, 2)

where i,, iy and i, are unit vectors in the «-, f- and z-directions, respectively.
The strain displacement relations can be derived from the above equations (Gol’denveizer, 1953;
Chang, 1993; Leissa and Chang, 1996) as

_ b (law e o4 w
“=Utzry)\doa T aBop T R,
__ 1 (low uodB w
%= (tz/R)\Bop T aB o TR,
- 1 lav u 8A
“0 = (14z/R)\A oo AB P Ra,j
_ b (lw v B W
= (I+z/R)\BOB  ABox ' R,
_ v ow R v
e = 4 zR) 0g A0 ) A(l-l—Z/R) Ry(1+z/R,)
L v +B(1+/R) ! 3)
_ T z
7 B(1+2/Ry) 0B ’ B(1+z/Rﬁ) R,s(1+2/Ry)

Assuming that normals to the midsurface strains remain straight during deformation but not
normal, the displacements can be written as

M(OC, ﬁ: Z) = Uy (OC, ﬁ) +leot((xa B)

U(OC, ﬁ: Z) =" (O(, ﬁ) +le/;((l, B)

W(OC, ﬁa Z) = WO(aa ﬁ) (4)
where u,, v, and w, are midsurface displacements of the shell and v, and \; are midsurface
rotations. The above equations describe a typical first order shear deformation shell theory and
will constitute the only assumption made in this analysis when compared with the three-dimensional
theory of elasticity. Substituting eqns (4) into (3) yields:

&y = (8()1 +ZKC¢)

1
(1+2/R,)

1
& = m(ﬁoﬂ +ZK13)

1
Eup = m(%w +2K,p)
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1
Voz = m(%a: _Z(w/}/Ra/)’))

1
Vp: = m(%ﬁz—z(%/&ﬁ)) Q)

where the midsurface strains are:
1 51/!0 (2] 0A4 Wy

= o
1 dv,

+E%+E

u, 0B
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Uy 04
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= — — _— -_— 6
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and the curvature and twist changes are:

o LW Wy oA 10y W, OB
*“ A 0w  ABOB> " B O T AB oo
o Loy .04 L0y, Y, 0B (7)
408 ABOB> "™ B Op  AB oo

3. Force and moment resultants

The stress—strain relationship for a typical nth lamina (typically called monoclinic) in a laminated
composite shell made of N laminae (Fig. 5) is (Whitney, 1987):

_GJ _Q_ll O, O 0 0 Q_lﬂ 2
Op O, 0 0y 0 0 O &g
0 _ Q_13 Q23 Q_33 0 0 Q36 € ®)
Op: 0 0 0 Qs Oss 0 Yz
O 0 0 0 O Oss O Yoz
| Oap | _Q_m Oy O3 O 0 Ocs 1 Ve |
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Fig. 2. Stresses in shell coordinates.

da

Ngt+ 3a

Fig. 3. Force resultants in shell coordinates.

The positive notations of the stresses are shown in Fig. 2. It should be mentioned that no stretching
is assumed in the z-direction in the above equations (i.e., &. = 0). This actually is directly derived
from the third equation in (4).
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Fig. 4. Moment resultants in shell coordinates.
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Fig. 5. Lamination parameters in shells.

The force and moment resultants (Figs 3 and 4) are obtained by integrating the stresses over the
shell thickness. The normal and shear force resultants are:

Na h/2 *
Na/)’ :J\ Gotﬂ (1+Z/RB) dZ

—h2

QZX O-{X_'
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0,5 |(14+2z/R,)dz

)

The bending and twisting moment resultants, as well as higher-order shear resultant terms are:

2924
Nﬂ h/2 O-ﬂ
N/fa = J
—h/2
oy V-
Ma rhl2 O
Mcxﬁ = aaﬁ
J—h/2
L P, ] "“lo,. ]
My ~h2 O
Mﬁa = O’a/f
J—h/2
L P/; J LOp:

(14z/Rp)zdz

(14+z/R))zdz (10)

where P, and P; are higher-order shear terms, needed only if the radius of twist curvature exist
(i.e. R,z # 00). It should be mentioned that although the stresses 7,5 = 7,, the stress resultants
N, # Ng, and M,; # Mp,, unless R, = R, which is the case only for spherical shells or flat plates.
Substituting eqns (5) and (8) into (9) and (10), yields the following equations for the normal, in-
plane and shear forces:

N

) J (0116 Craty+ Grsrap) (1+2/Ry) dz
= /ﬁ"l Likl [Q_l 1 (80, +2K,) G __::Zf;f)‘f‘ O 12(80p+27p)
+ 016 (E0up +2K0p) (: :::Zii) uncy” +zzc,m)} dz
N, = ki J}:k_] |:Q_16(£01+zrca) G ijii)—l—gzﬁ(%ﬁ—kmﬂ)
+ 016 (E00p +2K4p) (%)JFQ’“(&)MZKM)}@
N O e A e o
N

Ny= 3

k=1

Jhk
Iy

+ 01 (£0up +2K0p) + 016 (Eop +2Kpy) (

e

- 1+z/R,
12 (€05 +2K,) + Qa5 (805 + 2K5p) <1+z/R
B

)
JJ

1+z/R,
1+z/Ry
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N Ny _ _ 1+Z/Ra
Nﬁac = z J |:Q16(£Oa< +2Ka)+Q26(801;+ZK/s) <1—|—Z/R,;>

k=1 Jh_,

_ . 1+2/R,
+ Qo6 (0 +20p) + Qs (S0 +2Kp) 142/R, dz
B

_ N . _ ﬂ 1 +Z/Roc _ . lp/;
Qﬁ = kgl Lkl |:Q44 (Vo/fz_ZRaﬁ> (1 +Z/R/;>+Q45 </0aZ_ZRaﬁ>j| dz

The higher-order shear terms, needed for pre-twisted shells are:

_ o ™ 5 7 142z/Ry ~ ﬂ
P, = kz,l Lkl |:Q55 (Voxz—ZR“) <1+Z/Ra>+Q45 (VO/fz_ZRaﬂ>:|
Vg

o T U\ (142/R) |
Pﬁ = kz,l J |:Q44 (VOﬂZ_ZRa/;> (1 +Z/R/;>+Q45 <V0aZ_ZRa/;>:| dz

hye— 1

zdz
z

The following equations are also obtained for the bending and twisting moments:

k=1

M,=} J% [0118,4+ 01285+ O1675s](1 +2/Rp)zdz

1

]ZV: J1k |:Q_11(800<+ZK0() <112§i>+Q_12(30ﬁ+2Kﬁ)

k=1 Jh_,

- 1+z/R -
+ 016 (£00p + 2K,p) <1+Z/Rﬁ>+ Oi6(eopn +ZK/3a):|ZdZ

M,y i J1k |:Q-16(801+2Ka) <1122Z>+Q_26(30/3+2Kﬂ)

k=1 Jn_,

- 1+z/R -
+ Q16(80xli +ZKaz/}) <1 _‘_Z/R/j)‘f‘ Qéé(gozm +ZK[fc<):| zdz

N (e _ _ 1+z/R,
My = Z J |:Q12(80x +ZKa)+Q22(30ﬁ +ZK/;) <1+ZR/;>

k=1 Jn_,

B _ 1+z/R,
+ 026 (Egup + 21¢,5) + Qo6 (E0py +2K4p,) m zdz
B

v [ _ 1+z/R,
My, =Y J |:Q16(801 +2K,) + Qa6 (80p +2Kp) <1+ZZ;R/;>

k=1 Jn_,

- - 1+z/R,
+ Q6 (£0up +250p) + Qo6 (E0px +21¢p,) W zdz
B
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As can be seen in the above equations, the term (1+z/R,) where n is either o or 5, in the
denominator creates difficulties in carrying out the integration. Such difficulties do not exist for
plates. In most thin shell theories, the term was ignored (Leissa, 1973). In some thin shell theories
(e.g., Vlasov’s), the term was expanded in a geometric series form. Numerical investigations
revealed that for thin shells, such expansion did not introduce better results. This can be under-
standable for thin shells where the term (14 z/R,) is between 0.98 ad 1.02 depending on the value
of z.

For thick shells, shear deformation should be considered. However, many researchers fail to
include the above term in the stress resultant equations (Reddy, 1984; Reddy and Liu, 1985).
When the term was expanded and then truncated in a recent presentation (Chang, 1993; Leissa
and Chang, 1996), better results were obtained when compared with three-dimensional recent
results (Bhimaraddi, 1991). The Appendix shows the derivation in which the term is expanded in
a geometric series and then truncated. In this paper, exact stress resultants are obtained when the
term is included and the integration is carried out exactly. This will yield the following stress
resultant equations:

[N, | (4, 4, A A B, B, By Bis| [ .|
Ny Ay, A Az AAze B, B,, By By €op
Noc[i /Ilé Asg I‘Ieo Ags Bis Bis Bss Bes Eoup
Ng, _ /ilé 1426 1‘{66 /Ise Bilé By Bi66 By €0pa (13)
M, By, B, Bis Bis D Din Dis Dis Ky
My B, By, Bis Bis Dy Dy, Dy D Kpg
M., Bis Bys Bgs Bss Dis Dy Dgs Dig Kup
| My, | | Bis Bys Bgs Bss Dig Dy Dy D 1 L%
and
0. Ass Ays Bss Bys Y00z
Oy _ 1‘{45 /144 3i45 B, Yop: (14)
P, Bss Bis Dss Dys — /Ry
Py Bys Biy Dis Dy | | —W/Ry
where

N
Ay =Y 0P (he—h_y)
k=1
1Y
By=5 Y OPhi—hi) ¢ ij=12.6
k=1

1y _
Dzjjzg Z Q?,")(hi—hi_l)
k=1
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N
Az/ = Z KK Q(k)(hk_hk—l)
k=1
1 X _
sz = Ekz,l KIK/Ql(jc) (hi —hi, 1) i;.f = 4’ 5 (15)
1 i
Dij g Z szij)(h/? —hifu)
A — A + B, A —d. + By
ij ijo Rﬁ s ij ijp Rl
B, =B,+2m  p —p,Dw i,j=1,2,4,56
ij ijo Rﬁ s ij ijp Ri s 3“9 Ty Iy
b, =D+ p, —p,, L
ij ijo R[; ’ ij ijp Ru

where K; and K; in the above equations are shear correction coefficients (Chang, 1993), typically
taken at 5/6 and where

N dz N R,+h, -
A. = (k) =R (ON| n
ijn kgl D QU 1+Z/Rn n kgl Ql] <Rn +hk—1>
No(he _ o zdz R,+hy
= (k) = ) _ _ o Tk
Bl./ﬂ k;] D, Ql_l 1+Z/Rn R Z Q |:(h/\ hkfl) Rn ln <Rn+hk1>j|
N _ o z2dz
Dy, = z('/'()
! kgl Jhe_ ! 1+Z/Rn
1 Rl1 h\'
_R Z Q(k) {(Rn+hk)2_(Rn+hk71)2}_2Rn(hk_hk71)_R)2l ln # >n:a’ﬁ
2 Rn+hk—l
N Ty =z dZ
E. = Yy~ T
> J LOTIR,
1 3
v g{(Rn+/1k)3_(Rn+hk71)3}+ERn{(Rn+hk)2_(Rn+hk71)2}
=R ) )
&9 3Ry )R} In [
n\Itk k—1 n Rn‘f—hk,] J
(16)

4. Numerical verification

Tables 1 and 2 show a comparison between the accurate stress resultants obtained here with
those valid for plates and commonly used for shells. Note that @ and b are the side lengths of the



Table 1

Non-dimensional stiffness parameters for homogeneous deep isotropic shells (E = E, = E,,v =0.3,a/b = 1,a/R; = 2,a/R,; = 0,a/h = 10)

Plate approx.

Accurate equations

Plate approx.

Accurate equations

Plate approx.

Accurate equations

i) Ay A, A, Error* 1008, 100B;; 100B;, Error* 1000D;; 1000D;, 1000D,;, Error*
E,a* E,a? E,a? E,d* E,a’ E,a’ E,a* E,a* E,a*

Cylindrical shells (R,/R; = 0)
(1,1) 0.109890  0.109890 NA 0.0 0 0.018306 NA 100 0.091575  0.091572 NA 0.0
(2,2) 0.109890 NA 0.110257 0.3 0 NA —0.018416 100 0.091757 NA 0.095128 0.6
(6,6) 0.038460  0.038460 0.038588 0.3 0 0.006407 —0.006446 100 0.032050  0.032049 0.032244 0.6

Hyperbolic paraboloidal shells (R,/R; = —1)
(1,1) 0.109890  0.110627 NA 0.6 0 0.036851 NA 100 0.091575  0.092685 NA 1.2
(2,2) 0.109890 NA 0.110627 0.0 0 NA —0.036851 100 0.091575 NA 0.092682 1.2
(6,6) 0.038460  0.038718 0.038718 0.0 0 0.012987 —0.012897 100 0.032050  0.032437 0.032437 1.2

*E.g. error = |(A;— A,;;) x 100/4,|.

8C6¢C
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Table 2

Non-dimensional stiffness parameters for [0, 90] laminated thick deep shells (E,/E, = 15,G»/E, = 0.5,G\3/E, = 0.5,v, = 0.3,a/b = 1,a/R; = 2,a/R,; = 0,a/h = 10)

Plate approx.

Accurate equations

Plate approx.

Accurate equations

Plate approx.

Accurate equations

i) Ay A, A, Error* 100B;; 100B; 100B;, Error* 1000D;; 1000D;, 1000D,;, Error*
E,a* E,a? E,a? E, & E,a’ E,a’ E,a* E,a* E,a*

Cylindrical shells (R,/R; = 0)
(1,1) 0.804829  0.769634 NA 4.5 —1.760563  —1.626488 NA 8.2 0.670691  0.624178 NA 7.0
(2,2) 0.804829 NA 0.772156 4.2 1.760563 NA 1.634540 7.7 0.670691 NA 0.630454 7.0
(6,6) 0.050000  0.049999 0.050167 0.3 0 0.008329 —0.008379 100 0.041667  0.042892 0.041918 0.6

Hyperbolic paraboloidal shells (R,/R; = —1)
(1,1) 0.804829  0.739450 NA 8.8 —1.760563  —1.508390 NA 16.7 0.670691  0.590178 NA 13.6
(2,2) 0.804829 NA 0.739450 8.8 1.760563 NA —1.508390  16.7 0.670691 NA 0.590178  13.6
(6,6) 0.050000 0.050335 0.050335 0.6 0 0.016767 —0.016767 100 0.041667  0.042170 0.042170 1.2

*E.g. error = |(A;— A,;;) x 100/4,|.

[P62-L16C (6661) 9§ $24n1on.3§ pup Spijos' fo [PUInof [puoyvutdju] [nvQ “S W
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shell (Fig. 1), and 4 is the total thickness of the shell (Fig. 2). In Table 1, isotropic thick (a/h = 10)
shells of deep curvature (a/R; = 2) are used. The 4,; terms are the membrane stress resultants and
the B;; terms present the stretching-bending coupling. The D,; terms are the bending stress result-
ants. All the stress resultant terms have been non-dimensionalized as shown in the tables. Spherical
shells are not considered here because stress resultants for spherical shells are the same as those
for plates. This has been verified numerically. One important observation is that the use of plate
stress resultants did not predict an extension—bending coupling for isotropic material, common
for laminated composites, while the accurate stress resultants did predict such coupling. Such
observation was earlier made for curved beams (Qatu, 1993). Other than the above phenomenon,
the accurate equations do not seem to improve the accuracy of the stress resultants by more than
2%. Further numerical results for a thickness ratio of five yielded an improvement of no more
than 5%. Hence, the accurate equations may not be needed for isotropic shells and the term
(14+z/R) in the denominator can be neglected yielding stress resultants similar to those of plates.
The expansion of such a term by use of a geometric series is not needed and yields undesired
complexities as in Vlasov’s equations (Leissa, 1973).

Laminated composite thick and deep shells are considered in Table 2. As shown there, the use
of the plate stress resultant equations did yield up to 16% error in the stress resultant coefficients.
Some researchers used the plate stress resultant equations for shells with a thickness ratio of five.
This 16% error is more than what is typically reported as an error due to ignoring shear defor-
mation. Such use will lead to greater errors. It is noticed that such an error is more for hyperbolic
paraboloidal shells than that for cylindrical shells.

Table 3 shows the stiffness parameters for laminated composite thick shallow shells. The cur-
vature is taken at the limit of shallow shell theory (a¢/R = 0.5). As can be seen from the table, the
plate approximate equations lead to a maximum of 4% error for hyperbolic paraboloidal shells.
Thus, the accurate equations may not be necessary for laminated shallow shells.

Table 4 shows results obtained using parameters usually considered as the limits of thin shell
theories. As noted, using the plate equations yield a maximum error of approximately 4%. Thus,
the accurate equations need not be used for thin laminated and isotropic shells.

In conclusion, ignoring the (1 +z/R) term in the denominator yields considerable inaccuracy for
laminated composite deep thick shells. The accurate stress resultant equations derived here should
then be used for these shells.

5. Energy functionals

The strain energy of the body when under elastic deformation can be written as:
1
U= 5 J (0,6, +0pes+0.6. 40,575+ 0,7, +04.75.) dV (17)
Vv

where V' is volume and
dV=ds, dS; dz=AB(1+z/R,)(1+z/Rs)dadfdz (18)

Substitute (5), (9) and (10) into the above equations, the strain energy functional can then be
written as:



Table 3
Non-dimensional stiffness parameters for [0, 90] laminated thick shallow shells (E,/E, = 15, G\,/E, = 0.5, G3/E; = 0.5,v,, = 0.3,a/b = 1,a/R; = 0.5,a/R,; = 0,a/h = 10)

Plate approx. Accurate equations Plate approx. Accurate equations Plate approx. Accurate equations
Ay A, A, 1003, 1008, 1008, 1000D, 1000D;; 1000D;;
G,j) —L ! ! Error* ! ! ! Error* ! ! ! Error*
E,a* E,a? E,a? E, & E,a’ E,a’ E,a* E,a* E,a* rror

Cylindrical shells (R,/R; = 0)

(1,1) 0.804829  0.769043 NA 1.1 —1.760563 —1.727094 NA 1.9 0.670691  0.659080 NA 1.8

(2,2) 0.804829 NA 0.796208 1.1 1.760563 NA 1.727633 1.9 0.670691 NA 0.659956 1.6

(6,6) 0.050000  0.050000 0.050000 0.0 0 0.002079 —0.002080 100 0.041667  0.041973 0.041682 0.6
Hyberpolic paraboloidal shells (R,/R; = —1)

(1,1) 0.804829  0.787553 NA 2.2 —1.760563  —1.694570 NA 3.9 0.670690  0.649178 NA 3.3

(2,2) 0.804829 NA 0.787553 2.2 1.760563 NA 1.694570 39 0.670690 NA 0.649178 3.3

(6,6) 0.050000 0.050021 0.050021 0.0 0 0.004168 —0.004168 100 0.041666  0.041698 0.041698 0.1

*E.g. error = |(A;— A,;;) x 100/4,|.

[$6C2-L16C (6661) 9§ $24n1on.43S pup Spijos fo [PUInof [puoypuiduf [nivQ “S W
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Table 4

Non-dimensional stiffness parameters for [0, 90] laminated thin deep shells (£,/E, = 15, G,/E, = 0.5,G3/E; = 0.5,v,, = 0.3,a/b = 1,a/R; = 2,a/R,; = 0,a/h = 40)

Plate approx.

Accurate equations

Plate approx.

Accurate equations

Plate approx.

Accurate equations

i) Ay A, A, Error* 100B;; 100B; 100B;, Error* 1000D;; 1000D;, 1000D,;, .
E,a* E,a? E,a? E, & E,a’ E,a’ E,a* E,a* E,a* Error
Cylindrical shells (R,/R; = 0)
(1,1) 0.201207  0.199008 NA 1.1 —0.110035 —0.107940 NA 1.9 0.010480  0.010308 NA 1.9
(2,2) 0.201207 NA 0.199049 1.1 1.110035 NA 0.107939 1.9 0.010480 NA 0.010312 1.6
(6,6) 0.012500  0.012500 0.012503 0.0 0 0.000130 —0.000130 100 0.000651  0.000651 0.000651 0.0
Hyberpolic paraboloidal shells (R,/R; = —1)
(1,1) 0.201207  0.196888 NA 2.2 —0.110035 —0.105911 NA 3.9 0.010480  0.010143 NA 3.3
(2,2) 0.201207 NA 0.196888 2.2 0.110035 NA 0.105911 39 0.010480 NA 0.010143 3.3
(6,6) 0.012500 0.012505 0.012505 0.0 0 0.000261 —0.000261 100 0.000651  0.000652 0.000652 0.1

*E.g. error = |(A;— A,;;) x 100/4,|.

(4%

[$6C2-L16C (6661) 9§ $24n1on.43S pup Spijos fo [PUInof [puoypuiduf [nivQ “S W
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1
U= 2Jv J <N1801 + Nﬁgoﬁ + Noc[iSOtxﬂ + Nﬂocgoﬁoc + roVOocz + Qﬂ’yO[i:
aJp

Pa',b/; . P/}wot
Ry Ry

+M1K1+MﬁKﬁ+M“/}Ka/;+MﬁaKﬁx— )ABdOCdﬁ (19)

which can be written in terms of displacements by substituting eqns (6) and (7) in the above
equation.

External work can be done on a shell element by applying distributed forces and moments as
well as end reaction. The total work can be written as:

W= J J (qotto +qgv0 +g,Wo +mp, +mgy ) ABdo dp
o Jp
‘|‘J (Noyuo + NOa/fUO + Qoo + MOawa + MO/}aw/f)B dp
B

+J (N()ﬁv() +N()ﬁau() + Q()ﬁWo + Mo/ﬂpﬁ +M()ocﬁl/ja)A da (20)

where Ny,, Nog, No,s and Ny, are in-plane normal and shear force results; Q,, and Q,; are out of
plane shear force resultants; M,, and M, are bending moments and M,,; and M, are twisting
moments. Work done by external concentrated forces can be added to the energy term by mul-
tiplying the force by the displacement component in its direction, or by expanding the force in a
series.

Kinetic energy can be given by:

p ou\? (vt [ow\?
P () +(a) + () ) e

where p is mass density per unit volume and V' is volume.
Substituting eqns (4) into the kinetic energy expression and integrating with respect to z, yields:

Y O e O P T AN G AN
=2 () )G e (GG (RN
6%2 a'ublfz 7
+<< a[) +<8[> >I3 docdﬁ (22)
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L =(L+1 L Pt (23)
TR, Rﬁ R,R,
N [
[117]2913914715] = Z J\ p(k)[laza 22923924] dZ (24)
k=1 Jn._,

It should be mentioned that the terms 7, and I, are non-zero only if the material densities are not
symmetric about the middle surface. These quantities are zeros for unsymmetrical lamination if
the same material is used.

6. Equations of motion

In order to develop a consistent set of equations, the equations of motion will be derived using
Hamilton’s principle:

5 J (U—=W—T)di =0 (25)

Substituting the equations for potential energy, external work and kinetic energy and performing
the integration by parts and then setting the coefficients of the displacement variations equal to
zero, in a normal manner, yields the following equations of motion:

i(BN)+ —(AN )+aA @N +@ +@ ABq, = AB(Lii} + Ly?2)

aoc o ﬁ po ﬁ 006 p Ra QO( Ra[g Q[f qu = 1Ug 2V a

0 8A AB .

N, & Na/;—i—N/;“ i

iBM + —(AM )+6A @M AB +—BP +ABm, = AB(Lii + Ly?)

(70(( ) 0ﬂ( ot B Pl 0, y B n, = (L>i5 3¥y

2 AM)+ —(BM a—BM a—AM AB ﬁP ABmy = AB(Lv + L3 26
aﬁ( ﬂ)+ aOC( aﬁ)_‘_ ﬁoc Po 6ﬁ o Qﬂ—J’_ Ra/; o<+ m/? - (2U0+ 31#/3) ( )

where the two dots over the terms present the second derivative of these terms with respect to time.

7. Boundary conditions

Hamilton’s principle will also yield boundary terms that are consistent with the other equations.

These boundary terms for the boundari

NOO(_N%:() or uo :O

es with o« = constant are:
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Noyy—N,; =0 or v,=0

00,—0.,=0 or w, =0

My, —M,=0 or Y,=0

My,;—M,; =0 or ;=0 (27)
Similarly for § = constant. Chang (1993) obtained the same equations.

8. Doubly curved shells

Consider a shell with the following characteristics:

(I) Constant radii of curvature R, and R; and a radius of twist of infinity, i.e. (1/R,z) = 0.
(2) Constant Lamé parameters. They equal one unit.

This is shown to be the case for shallow shells, twisted plates, cylindrical shells and barrel shells.
Constant Lamé parameters cannot be applied to general shells.

Substituting eqns (6), (7), (13) and (14) into eqns (26) yields the equilibrium equations in terms
of displacements. These equations are proven useful when exact solutions are desired. The equations
can be written as:

Lju,+M i, = g, (28)
where
U = [MOaUOaW07 lpw lp/}]T

and

T

q: = [_qav _q[)‘7 — 4y, — N, _mo:]

0* 0* .07 Ass
Lll_Alla +2A168aaﬁ+A66$—R7§
0* 0’ .07 Ays

L12_A16a +(A]2+A66)a 8,8 + A5 ?_RaR/j

14—‘11—}_14_55 A12 a A16+A45 1426 a
L. .= L M 726 7
13 [ R ]anr R, R, |op
2 62 . 82 ASS
[’l4_Blla 2+2B1660C8/3+B66$+ RO(
o 2 R Al

LIS_BIGa +(B12+Bss)a 5ﬁ + B ?_R\'x

The stiffness parameters L;; in eqn (28) are:
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e 2 . A,
L22 = A66 aaz +2A26W+ 22%_7;
Ayo+Ays Ag 10 [Ay+Ass A0
LM—Bmy—H&ﬁBM & 1§fi+£ﬁ
0o’ d0dp T 0p TR,
Lﬁ-ﬁ&maz+23% & +én£in+£ﬁ
oo? 0o Of op> Ry
L33:_14755i2_2A45i_14’:44£+@ 2A12 A\zz
0o? 000 op>  R2  R.R; R}

R

_ B B 0 B B 0
L34=|: Ass+ 11+ 12:|(3 +|:—A45+16+ 26:|5ﬂ

R, ' R,

R S R
L44 = _I‘Iss‘i‘ljlliz‘i‘zljlsi‘f‘ﬁﬁﬁiz
002 do 0 0>
o 2 o
Lys = —Aus +Dlea + (D, +D()6)a 6/3 ?
0’ 0* . 07

Lss = _A44+D668 +2D26a 5ﬁ + D>

The mass parameters in eqn (28) are:
M, =M,, =My; = —1,
M, =M,s = —1,
My, =Mss = —1,
all other M; =0

9. Exact solutions for simple support boundaries

‘o

(29)

(30)

Equations (28) are valid for forced vibration problems. They can be specialized to static analysis
by letting the time derivative equal zero. To obtain the free vibration problem, the static loading

(g,) is set to zero.

Assume that the shell is constructed of cross-ply laminates. Thus,
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Alé:A262316:B26:D16:D26:O (31)

For shear diaphragm boundaries (S2) (Leissa, 1973), the well-known Navier solution can be
applied to obtain an exact solution. The displacement and shear functions are assumed to be:

uy (o, f, 1) = i i U, cos(a,,o) sin(b, ) sin(wi)

m=1n=1

vo(a, B, 1) = i i V., sin(a,,a) cos(b,f) sin(wt)

m=1n=1

wo (o, 5, 1) = i i W, sin(a,,o) sin(b, ) sin(wt)

m=1n=1

W, (o, f, 1) = i i W o €OS(a,,0) sin(b, f) sin(wt)

m=1n=1

Yy(on B, 1) = Z > Vg Sin(a,2) €08 (D, ) sin(w?) (32)
m=1n=1
where a,, = mn/a and b, = nn/b.
Substituting eqns (32) into eqns (28) and using the Fourier expansion for the loading functions
yields

[K1{A} + @’ [MI{A} = —{F} (33)

where [K], [M] are the stiffness and mass matrices, respectively, w is the frequency, {F} is the
forcing function and

{A} = {Umn: ana Vana lpamna lp/imn}T (34)

The above equations can be used directly for the natural frequencies.

10. Comparison with published results

The following natural frequency parameter is used for the subsequent analysis:

Q = wa*/p/E,h* (35)

Tables 5 and 6 show comparisons of the natural frequency parameters with previously published
results for cylindrical and spherical open shells, respectively. FSD theories were used by Librescu
et al. (1989) and Bhimaraddi (1991). Librescu et al. and Bhimaraddi also used Higher-order Shear
Deformation (HSD) theories. Bhimaraddi used the three-dimensional (3-D) theory of elasticity to
obtain exact analytical solutions. The previously described Navier solution was used to obtain
these 3-D results.

In HSD theories, boundary conditions at the upper and lower surface of the shell can be satisfied
and there is no need for shear correction factors. Despite this, the results shown indicate that HSD
theories do not always yield better results than FSD ones. The results show that all FSD and HSD
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Table 5
Non-dimensional frequency parameters Q for [0,90] cylindrical shells (E,/E =25,G,/E, =0.5,G;/
E, =0.5,Gn/E; =02,v,,=03,k*=5/6,a/b = 1,a/h = 10)

Present Equation of Bhimaraddi Librescu
R/a theory Appendix A* (1991) (1989)
3-D FSD HSD FSD HSD
1 10.643 10.667 10.4085 10.7475 10.9189
2 9.4428 9.4577 9.3627 9.3653 9.5664
3 9.1755 9.1860 9.1442 9.0563 9.2642
4 9.0731 9.0811 9.0613 8.9403 9.1506
5 9.0221 9.0286 9.0200 8.8840 9.0953 8.931 8.959
10 8.9446 8.9479 8.9564 8.8026 9.0150 8.897 8.933
20 8.9194 8.9199 8.9341 8.7779 8.9904 8.894 8.934
0 8.9001 8.9001 8.9179 8.7640 8.9761 8.900 8.944

*Same as Chang (1993).

Table 6
Non-dimensional frequency parameters Q for [0,90] spherical shells (E,/E =25,G,/E, = 0.5 Gs/E, = 0.5 G/
E,=02,v,,=03,k*=5/6,a/b =1,a/h = 10)

Present Equation of Bhimaraddi Librescu
R/a theory Appendix A* (1991) (1989)
3-D FSD HSD FSD HSD
1 14.4746 14.4746 13.9974 14.8008 14.9075
2 10.7478 10.7478 10.5528 10.8054 10.9708
3 9.7822 9.7822 9.6917 9.7455 9.9330
4 9.4102 9.4102 9.3637 9.3332 9.5306
5 9.2309 9.2309 9.2065 9.1338 9.3361 9.247 9.292
10 8.9843 8.9843 8.9912 8.8584 9.0679 8.989 9.033
20 8.9213 8.9213 8.9363 8.7877 8.9992 8.922 8.966
o0 8.9001 8.9001 8.9179 8.7640 8.9761 8.900 8.944

* Same as present theory, agrees with Chang (1993) to the fourth or fifth decimal.

theories deviate from the 3-D theory of elasticity as the shell becomes deeper. This indicates that
the error in these theories may very well be due to the fact that the term 1+4z/R was ignored.
Previous FSD and HSD theories further show that the deviation from 3-D is higher for spherical
shells than cylindrical ones.

The present theory shows closer approximation to the 3-D results when compared with the FSD
theories of Librescu et al. and Bhimaraddi. The present theory also shows better approximation
than HSD theories.

It should be mentioned that the equations used here (13)—(16) do suffer from numerical instability
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when one or both radii of curvature become large. The expansion used in the Appendix yielded
results that are close to those obtained here and offers numerical stability when the radii values
become large, like in shallow shells. Such equations should be used for shallower shells.

11. Conclusions

A complete and consistent set of equations are derived for laminated composite deep thick
shells. These equations include an initial pre-twist, which most other theories ignored. These
equations further include accurate force and moment resultant equations by including the (1 +z/R)
terms (in the denominator of the stress resultant integrands) in the integration, which almost all
other theories ignored. Numerical results verified that, for the force and moment resultants as well
as the natural frequencies, these terms should be included for deep thick composite shells. Including
these terms in free vibration analysis yielded frequencies that are close to those obtained by 3-D
theory of elasticity. Considerations of these terms yielded significant enhanced accuracy for lami-
nated composite thick curved beams (Qatu, 1993).

It has been concluded that using the plate approximation equations for stiffness parameters of
isotropic thick shells leads to an error of 2% and for thin laminated shells or thick shallow shells
leads to an error of 4%. Thus, the plate approximation equations may be used for these theories
without a major sacrifice in the accuracy. For deep thick shells, however, the accurate equations
presented here [eqns (13)—(16)] or their geometric expansion alternative (equations provided in
the Appendix) should be used. It has been demonstrated that the accurate equations yield closer
approximation than previously published FSD and HSD theories for the natural frequencies when
compared with the three-dimensional theory of elasticity. This has been demonstrated by obtaining
results of various theories for spherical and cylindrical shells. Hyperbolic paraboloidal shells should
yield similar results and will be investigated in a later study.

Appendix: Alternative derivation of the stress resultant equations

The term (1+z/R,)/(1+4z/R;) shown in various locations in eqns (11) and (12) for force and
moment resultants is expanded here using a geometric series, thus,

al hye z z 72
kzlj, Hdz,(zlﬁ <1+RM><1_R,;,(+R2]€_“'>dZ (A1)
e—1 1_1’_7 e B

where R, and Ry are the radii of curvature of the midsurface of the shell, R, and Ry are the radii
of curvature of the kth layer, taken at the midsurface of that layer.

Multiplying the integrand of the right-hand side of eqn (A1) and neglecting higher-order terms,
yields
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z
N (h <1 Rak> N (h 1 1
kgl Lkl <1 n Z>dz - kgl Lkl <1+Z (R'x - Rﬁ)) ¢
Ry
Using the above equations and letting

A
“=\R, R,

will yield the following equations
Ay =Aj—coBy, A;=A;+cBy;

a

=D;—coEy, Dy=D;+cEy

D

ij

where

= ¥ 0Pt )

1 X _
Bii =5 Z Q?f‘)(hi—hifl)
25

o L i i=1,2,6
Dy=3 % 0Pt —h)
N
By= X O~

and

N
Ar/ = Z KK/QEf)(hk_hkfl) w

k=1

DY KKQGPGR ) b ij=4.5
/x 1

1 X ~k
k=1

J

(A2)

(A3)

(A4)

(A5)

(A6)

The above equations are similar to those obtained by Chang (1993) and Leissa and Chang (1996).
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